今天是:
欢迎来到本溪市建筑节能和墙体改革办公室!
知识园地
知识园地
您现在的位置:首页 > 知识园地

地源热泵

作者: 发布于:2012-12-28 21:39:38 点击量:

地源热泵

地源热泵是一种利用浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调设备。

地源热泵通过输入少量的高品位能源(如电能),实现由低温位热能向高温位热能转移。地能分别在冬季作为热泵供热的热源和夏季制冷的冷源,即在冬季,把地能中的热量取出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。通常地源热泵消耗1kWh的能量,用户可以得到4kWh以上的热量或冷量。

地源热泵由来

"地源热泵"的概念,最早于1912 年由瑞士的专家提出,而该技术的提出始于英、美两国。 北欧国家主要偏重于冬季采暖,而美国则注重冬夏联供。由于美国的气候条件与中国很相似,因此研究美国的地源热泵应用情况,对我国地源热泵的发展有着借鉴意义。

地源热泵的热源

目前,地源热泵已成功利用地下水、江河湖水、水库水、海水、城市中水、工业尾水、坑道水等各类水资源以及土壤源作为地源热泵的冷、热源。

地源热泵组成

地源热泵供暖空调系统主要分三部分:室外地能换热系统、地源热泵机组和室内采暖空调末端系统。其中地源热泵机主要有两种形式:水—水式或水—空气式。三个系统之间靠水或空气换热介质进行热量的传递,地源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。

地源热泵主要特点

1)地源热泵技术属可再生能源利用技术。由于地源热泵是利用了地球表面浅层地热资源(通常小于400米深)作为冷热源,进行能量转换的供暖空调系统。地表浅层地热资源可以称之为地能,是指地表土壤、地下水或河流、湖泊中吸收太阳能、地热能而蕴藏的低温位热能。地表浅层是一个巨大的太阳能集热器,收集了47%的太阳能量,比人类每年利用能量的500倍还多。它不受地域、资源等限制,真正是量大面广、无处不在。这种储存于地表浅层近乎无限的可再生能源,使得地能也成为清洁的可再生能源一种形式。

2)地源热泵属经济有效的节能技术。其地源热泵的COP值达到了4以上,也就是说消耗1KWh的能量,用户可得到4KWh以上的热量或冷量。

3)地源热泵环境效益显著。其装置的运行没有任何污染,可以建造在居民区内,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,且不用远距离输送热量。

4)地源热泵一机多用,应用范围广。地源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统;可应用于宾馆、商场、办公楼、学校等建筑,更适合于别墅住宅的采暖、空调。然而实现地源热泵主机系统的这一机多用,则需要一整套系统解决方案,其有动力输配系统-----节能空调机房,室内末端输送设备采用地暖分集水器,水力平衡分配器,生活热水采用多功能水箱。由此可体现出地源热泵主机的一机多用也代表着暖通系统的整个运行体系。

5)地源热泵空调系统维护费用低。地源热泵的机械运动部件非常少,所有的部件不是埋在地下便是安装在室内,从而避免了室外的恶劣气候,机组紧凑、节省空间;自动控制程度高,可无人值守。

由以上的特点可以看出,地源热泵的技术以后可得到广泛的应用。

然而,地源热泵要实现制冷制热,则需要给它提供动力来输送制冷制热管道中的循环水,目前传统机房可提供动力,但施工起来比较复杂,难度高,周期长,采购的材料种类多,需库存,漏水隐患大等等问题,针对此,市场上开发了一款新型的动力输配系统设备-----节能空调机房。此机房系统是将传统机房中的所有部件进行集成模块化,实行一体化安装的模式。不仅在施工难度上大大降低了,而且无需库存,漏水隐患大大降低了,还能与主机进行无限联动等等,由此可以看出,节能空调机房实为一款为暖通行业提供一整套的解决方案.

地源热泵主机可将空调、地暖、生活热水三合为一。也就是地源热泵的一机多用,为暖通系统提供整套方案,由此可采用目前市场上出现的节能空调机房,水力平衡分配器,储能热水水箱,这几款设备能有效的解决以上问题,首先节能空调机房与地源热泵主机配套,为其提供输送循环水的动力,而其室内末端使用水力平衡分配器,它能将末端的水力系统达到平衡,使其室内的每个房间同时达到平衡,而且它无中间环节点,大大减少漏水隐患。生活热水可以采用储能热水水箱实现全年全天候使用,而且带热回收的地源热泵主机或者通过节能空调机房给它提供热源。可以得出,节能空调机房,水力平衡分配器,储能热水水箱这一套设备为暖通空调和供热采暖提供了完美的解决方案,与此同时它也实现了将地源热泵主机系统,地暖、空调、生活热水能实现一体化安装。

地源热泵主机与节能空调机房的完美配合给整个暖通系统的供热采暖提供整套的解决方案!节能空调机房和地源热泵配套使用,其节能空调机房可为整个空调系统提供动力,它的内部主要构造有两个泵,一个为水源侧的泵,一个用户侧的泵。其水源侧的泵是给地源热泵的地埋侧输送循环水,而用户侧的泵就是为室内末端设备输送循环水,从而达到制冷制热的目的。在室内末端输送时,采用水力平衡分配器大大减少漏水隐患,末端冷热效果均衡。在地源热泵使用的同时,还可以回收制冷工作过程放出的热量,用来制取生活用水。在这一整套系统中,地源热泵主机与节能空调机房、水力平衡分配器,多功能水箱有机地结合在一起,为暖通空调和供热采暖提供一整套解决方案。

总而言之,节能空调机房、水力平衡分配器、多功能水箱与地源热泵的结合为整个暖通系统增加亮点,同时在安装上便捷了很多,施工时间、采购周期都大大缩短了,人工成本也将低了等等。由此可见节能空调机房与地源热泵的配合是未来暖通行业必然的发展趋势。

水源/地源热泵有开式和闭式两种。

开式系统:是直接利用水源进行热量传递的热泵系统。该系统需配备防砂堵,防结垢、水质净化等装置。

闭式系统:

是在深埋于地下的封闭塑料管内,注入防冻液,通过换热器与水或土壤交换能量的封闭系统。闭式系统不受地下水位、水质等因素影响。

1、垂直埋管--深层土壤

垂直埋管可获取地下深层土壤的热量。垂直埋管通常安装在地下50-150米深处,一组或多组管与热泵机组相连,封闭的塑料管内的防冻液将热能传送给热泵,然后由热泵转化为建筑物所需的暖气和热水。垂直埋管是地源热泵系统的主要方式,得到各个国家的政府部门大力支持。

2、水平埋管--大地表层 在地下2米深处水平放置塑料管,塑料管内注满防冻的液体,并与热泵相连。水平埋管占地面积大,土方开挖量大,而且地下换热器受地表气候变化的影响。

3、地表水,江、河、湖、海的水以及深井水统称地表水。地源热泵可以从地表水中提取热量或冷量,达到制热或制冷的目的。利用地表水的热泵系统造价低,运行效率高,但受地理位置(如江河湖海)和国家政策(如取深井水)的限制。

地源热泵可再生性

地源热泵是一种利用土壤所储藏的太阳能资源作为冷热源,进行能量转换的供暖制冷空调系统,地源热泵利用的是清洁的可再生能源的一种技术。地表土壤和水体是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量);它又是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散相对的平衡,地源热泵技术的成功使得利用储存于其中的近乎无限的太阳能或地能成为现实。

地源热泵机组高效节能

地源热泵机组利用土壤或水体温度冬季为12-22℃,温度比环境空气温度高,热泵循环的蒸发温度提高,能效比也提高;土壤或水体温度夏季为18-32℃,温度比环境空气温度低,制冷系统冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率大大提高,可以节约30--40%的供热制冷空调的运行费用,1KW的电能可以得到4KW以上的热量或5KW以上冷量。

与锅炉(电、燃料)供热系统相比,锅炉供热只能将90%以上的电能或7090%的燃料内能为热量,供用户使用,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省约二分之一的能量;由于地源热泵的热源温度全年较为稳定,一般为1025℃,其制冷、制热系数可达3.54.4,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的5060%。因此,近十几年来,尤其是近五年来,地源热泵空调系统在北美如美国、加拿大及中、北欧如瑞士、瑞典等国家取得了较快的发展,中国的地源热泵市场也日趋活跃,可以预计,该项技术将会成为21世纪最有效的供热和供冷空调技术。

表一:

地源热泵与其它加热方式相比的能源消耗情况比较:

  

  表一

比较后可得出地源热泵是所有加热方式中最节约能源的。

  表二:

 

地源热泵空调系统与传统的中央空调系统各方面的特点相比:

地源热泵空调系统在各方面都比传统空调系统表现优秀。

  表三:

 

300平米别墅,供暖季供暖和生活热水运行费用与其它供暖方式相比:

注:表三研究对象为北京的一套高档别墅,面积为300平米,采用1DL-A120机组,由达隆公司设计并完成施工安装。各种价格参数取自市政府相关部门发布的《2004年度北京能源利用报告》,以及《2006年度北京能源利用报告》,2个年度的能源价格变动较大。本表按用户每天运行15小时,一个采暖季计算。

地源热泵优点

环境和经济效益显著

地源热泵机组运行时,不消耗水也不污染水,不需要锅炉,不需要冷却塔,也不需要堆放燃料废物的场地,环保效益显著。地源热泵机组的电力消耗,与空气源热泵相比也可以减少40%以上;与电供暖相比可以减少70%以上,它的制热系统比燃气锅炉的效率平均提高近50%,比燃气锅炉的效率高出了75%

一机多用,应用广泛

地源热泵系统可供暖、空调制冷,还可提供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统,特别是对于同时有供热和供冷要求的建筑物。地源热泵有着明显的优点。不仅节省了大量的能量,而且用一套设备可以同时满足供热、供冷、供生活用水的要求,减少了设备的初投资,地源热泵可应用于宾馆、居住小区、公寓、厂房、商场、办公楼、学校等建筑,小型的地源热泵更适合于别墅住宅的采暖、空调。

自动运行

地源热泵机组由于工况稳定,可以设计成简单的系统,部件较少,机组运行可靠,维护费用用低,自动控制程度高,使用寿命长。

无环境污染

地源热泵的污染物排放,与空气源热泵相比,相当于减少38%以上,与电供暖相比,相当于减少70%以上,真正的实现了 节能减排节能减排是减少能源浪费和降低废气排放更多。

维护费用低

地源热泵系统运动部件要比常规系统少,因而减少维护,系统安装在室内,不暴露在风雨中,也可免遭损坏,更加可靠,延长寿命。

使用寿命长

地源热泵的地下埋管选用聚乙烯和聚丙烯塑料管,寿命可达50,要比普通空调高35年使用寿命。

维持生态环境平衡

地源热泵夏天把室内的热量排到地下,冬天把地下的热量取出来供室内使用,相对来说,向环境排放更少的能量,维持生态环境的平衡。

节省空间

没有冷却塔、锅炉房和其它设备,省去了锅炉房,冷却塔占用的宝贵面积,产生附加经济效益,并改善了环境外部形象。

地源热泵系统的能量来源于自然能源。它不向外界排放任何废气、废水、废渣、是一种理想的“绿色空调”。被认为是目前可使用的对环境最友好和最有效的供热、供冷系统。该系统无论严寒地区或热带地区均可应用。可广阔应用在办公楼、宾馆、学校、宿舍、医院、饭店、商场、别墅、住宅等领域。

地源热泵工作原理

在自然界中,水总是由高处流向低处,热量也总是从高温传向低温。人们可以用水泵把水从低处抽到高处,实现水由低处向高处流动,热泵同样可以把热量从低温传递到高温。

地源热泵系统原理

所以热泵实质上是一种热量提升装置,工作时它本身消耗很少一部分电能,却能从环境介质(水、空气、土壤等)中提取4-7倍于电能的装置,提升温度进行利用,这也是热泵节能的原因。 

地源热泵是热泵的一种,是以大地或水为冷热源对建筑物进行冬暖夏凉的空调技术,地源热泵只是在大地和室内之间“转移”能量。利用极小的电力来维持室内所需要的温度。

在冬天,1千瓦的电力,将土壤或水源中4-5千瓦的热量送入室内。在夏天,过程相反,室内的热量被热泵转移到土壤或水中,使室内得到凉爽的空气。而地下获得的能量将在冬季得到利用。如此周而复始,将建筑空间和大自然联成一体。以最小的低价获取了最舒适的生活环境。

热泵原理

热泵机组装置主要有:压缩机、冷凝器、蒸发器和膨胀阀四部分组成,通过让液态工质(制冷剂或冷媒)不断完成:蒸发(吸取环境中的热量) →压缩→冷凝(放出热量)→节流→再蒸发的热力循环过程,从而将环境里的热量转移到水中。压缩机(Compressor):起着压缩和输送循环工质从低温低压处到高温高压处的作用,是热泵(制冷)系统的心脏;蒸发器(Evaporator):是输出冷量的设备,它的作用是使经节流阀流入的制冷剂液体蒸发,以吸收被冷却物体的热量,达到制冷的目的;冷凝器(Condenser):是输出热量的设备,从蒸发器中吸收的热量连同压缩机消耗功所转化的热量在冷凝器中被冷却介质带走,达到制热的目的;膨胀阀(Expansion Valve)或节流阀(Throttle):对循环工质起到节流降压作用,并调节进入蒸发器的循环工质流量。根据热力学第二定律,压缩机所消耗的功(电能)起到补偿作用,使循环工质不断地从低温环境中吸热,并向高温环境放热,周而往复地进行循环。

热泵分类

热泵是需要冷凝器的热量,蒸发器则从环境中吸热,此时从环境取热的对象称为热源;相反制冷是需要蒸发器的冷量,冷凝器则向环境排热,此时向环境排热的对象称为冷源。

蒸发器冷凝器根据循环工质与环境换热介质的不同,主要分为空气换热和水换热两种形式。热泵根据与环境换热介质的不同,可分为:水—水式,水—空气式,空气—水式,和空气—空气式共四类。 利用空气作冷热源的热泵,称之为空气源热泵。空气源热泵有着悠久的历史,而且其安装和使用都很方便,应用较广泛。但由于地区空气温度的差别,在我国典型应用范围是长江以南地区。在华北地区,冬季平均气温低于零摄氏度,普通空气源热泵不仅运行条件恶劣,稳定性差,而且因为存在结霜问题,效率低下、现在新出了一款超低温空气源热泵专门针对华北地区的,超低温空气源热泵稳定性好,效率高,具有高效除霜功能。利用水或地热作冷热源的热泵,称之为地源热泵。水和地热是一种优良的热源,其热容量大,传热性能好,一般地源热泵的制冷供热效率或能力高于空气源热泵,但地源热泵的应用常受到水源或地热的限制。

地源热泵系统按其循环形式可分为:闭式循环系统、开式循环系统和混合循环系统。对于闭式循环系统,大部分地下换热器是封闭循环,所用管道为高密度聚乙烯管。管道可以通过垂直井埋入地下150200英尺深,或水平埋入地下46英尺处,也可以置池塘的底部。在冬天,管中的流体从地下抽取热量,带入建筑物中,而在夏天则是将建筑物内的热能通过管道送入地下储存;¨对于开式循环系统,其管道中的水来自湖泊、河流或者竖井之中的水源,在以与闭式循环相同的方式与建筑物交换热量之后,水流回到原来的地方或者排放到其它的合适地点;对于混合循环系统,地下换热器一般按热负荷来计算,夏天所需的额外的冷负荷由常规的冷却塔来提供。

地源热泵原理

地源热泵则是利用水与地能(地下水、土壤或地表水)进行冷热交换来作为地源热泵的冷热源,冬季把地能中的热量“取”出来,供给室内采暖,此时地能为“热源”;夏季把室内热量取出来,释放到地下水、土壤或地表水中,此时地能为“冷源”。

水平式地源热泵

通过水平埋置于地表面24M以下的闭合换热系统,它与土壤进行冷热交换。此种系统适合于制冷供暖面积较小的建筑物,如别墅和小型单体楼。该系统初投资和施工难度相对较小,但占地面积较大。

垂直式地源热泵

通过垂直钻孔将闭合换热系统埋置在50M400M深的岩土体与土壤进行冷热交换。此种系统适合于制冷供暖面积较大的建筑物,周围有一定的空地,如别墅和写字楼等。该系统初投资较高,施工难度相对较大,但占地面积较小。

地表水式地源热泵

地源热泵机组通过布置在水底的闭合换热系统与江河、湖泊、海水等进行冷热交换。此种系统适合于中小制冷供暖面积,临近水边的建筑物。它利用池水或湖水下稳定的温度和显著的散热性,不需钻井挖沟,初投资最小。但需要建筑物周围有较深、较大的河流或水域。

地下水式地源热泵

地源热泵机组通过机组内闭式循环系统经过换热器与由水泵抽取的深层地下水进行冷热交换。地下水排回或通过加压式泵注入地下水层中。此系统适合建筑面积大,周围空地面积有限的大型单体建筑和小型建筑群落。

地源热泵应用方式

地源热泵的应用方式从应用的建筑物对象可分为家用和商用两大类,从输送冷热量方式可分为集中系统、分散系统和混合系统。

家用系统

用户使用自己的热泵、地源和水路或风管输送系统进行冷热供应,多用于小型住宅,别墅等户式空调。

集中系统

热泵布置在机房内,冷热量集中通过风道或水路分配系统送到各房间。

分散系统

用中央水泵,采用水环路方式将水送到各用户作为冷热源,用户单独使用自己的热泵机组调节空气。一般用于办公楼、学校、商用建筑等,此系统可将用户使用的冷热量完全反应在用电上,便于计量,适用于目前的独立热计量要求。

混合系统

将地源和冷却塔或加热锅炉联合使用作为冷热源的系统,混合系统与分散系统非常类似,只是冷热源系统增加了冷却塔或锅炉。

地源热泵制冷原理

在制冷状态下,地源热泵机组内的压缩机对冷媒做功,使其进行汽-液转化的循环。通过冷媒/空气热交换器内冷媒的蒸发将室内空气循环所携带的热量吸收至冷媒中,在冷媒循环的同时再通过冷媒/水热交换器内冷媒的冷凝,由水路循环将冷媒所携带的热量吸收,最终由水路循环转移至地下水或土壤里。在室内热量不断转移至地下的过程中,通过冷媒-空气热交换器,以13℃以下的冷风的形式为房供冷。

地源热泵发展

美国(The United States 1946年,美国第一台地源热泵系统在俄勒冈州的波兰特市中心区安装成功。

1973年,美国阿克拉荷马大厦安装了地源热泵空调系统,并且进行全面的系统研究。

1978年,美国能源部(DOE)开始对地源热泵投入了大量的科技研发基金。

1979年,美国阿克拉荷马州能源部成立了地源热泵系统科技研发基金会。

1987年,国际地源热泵协会(IGSHPA)在阿克拉荷马州大学成立。

1988年,美国俄克拉荷马商务部开始对地源热泵进行商务推广。

1993年,美国环保署(EPA)大力宣传地源热泵系统,加深美国民众对地源热泵的认识。

1994年,美国政府第一套地源热泵空调系统在俄勒冈州国会大学安装,地源热泵从此在美国政府,军队,电力公司等得到了大量应用。

1998年,美国环保署(EPA)颁布法规,要求在全国联邦政府机构的建筑中推广应用地源热泵系统。美国总统布什在他的得克薪斯州宅邸中也安装了地源热泵空调系统。目前,全球75%的地源热泵系统安装在北美地区。

美国:是世界上地源热泵生产、使用和发展的头号大国,

1985年:美国安装的地源热泵为14,000台;

1997年:45,000台;

2000年:400,000台;

2004年:670,000台;

2005年:1,000,000台。

加拿大:2005年地源热泵系统新增比例增加了50%

瑞士、挪威:是世界上地源热泵应用人均比例最高的国家,应用比例高达96%

奥地利:应用比例为45%

丹麦:应用比例为35%

日本:是亚洲地源热泵技术最先进,使用比例最高的国家。

中国(China 1997年,美国能源部(DOE)和中国科技部签署了《中美能效与可再生能源合作议定书》,其中主要内容之一是“地源热泵”项目的合作。

1998年,国内重庆建筑大学、青岛建工学院、湖南大学、同济大学等数家大学开始建立了地源热泵实验台,对地源热泵技术进行研究。

2006年,1月,国家建设部颁布《地源热泵系统工程技术规范国家标准》。

2006年,9月,沈阳被国家建设部确定为地源热泵技术推广试点城市,到2010年底,实现全市地源热泵技术应用面积约占供暖总面积的1/3

2006年,12月,建设部发布文件《“十一五”重点推广技术领域》。作为新型高效,可再生能源新技术的水源热泵技术被列入目录。

目前地源热泵的技术存在的最大不足是“土壤热不平衡”的问题。南方地区以供冷为主,常年向地下注入热量;而北方地区冬季供暖需求大,从土壤中大量吸热,长年运行后将导致土壤温度失衡,影响周围生态。

夏热冬冷地区的夏季供冷量往往大于冬季供热量,多出的热量可通过冷却塔散去,也可通过余热回收系统,用于供应生活热水,从一定程度上缓解土壤热不平衡的问题。

 

版权所有:本溪市建筑节能和墙体材料改革办公室 2012年12月21版
邮箱:bxsjnqgb@163.com 联系电话:0414-4521230 传真:0414-4521227 邮编:117022 地址:本溪市明山区峪明路336栋 建设大厦
网站浏览量: 备案号:辽ICP备08003939号-1 技术支持;宋月